大家好,今天小编关注到一个比较有意思的话题,就是关于深度机器学习python的问题,于是小编就整理了2个相关介绍深度机器学习Python的解答,让我们一起看看吧。
深度学习的和Python有什么关联吗?
深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:基于卷积运算的神经网络系统,即卷积神经网络(CNN);基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding);以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。
而Python是一种跨平台的计算机程序设计语言。 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell)。正因为python语法简单,非计算机专业的人员也能很快的上手掌握,并且生态环境良好,包管理成熟,能够让你把主要的精力投入到深度学习的算法分析设计上,所以目前大部分研究人员都在使python。***如未来出现更适合人工智能开发的程序语言,大家也会去学习。
关于这个问题,可以这样回答,深度学习是一种内容,而Python是它的其中一种实现方式。
深度学习是机器学习的一个分支,主要是脱胎于当初的神经网络算法,通过多个隐藏层的处理,达到我们所需要的任务的训练,得到一个有效的模型。深度学习因为他的有效性,现在被广泛应用在,CV、NLP、语音识别等方面。
而Python因为他语言的简洁性和易扩展性,被广泛使用。Python拥有很多科学计算库,比如numpy,pandas,scipy。可视化库matplotlib,Scikit—learn等,可以方便调用。也有很多现成的人工智能开发框架可以直接使用,比如现在比较常用的PyTorch和TensorFlow,Keras,Spark等。
打个比方,用了Python就是不用重复造轮子,如我梯度下降算法,我可以直接使用现成的自动梯度下降函数,而不用自己重新写函数。
总结一句,现在的深度学习的实现形式通常是Python,就是用Python代码编写实现我们的深度学习算法。
深度学习需要掌握Python嘛?零基础可以吗?
学习深度学习课程的话最基本的就是要具有一定的编程基础,并且具备一定的数学基础。比如计算机相关专业的本科生、研究生,计算机相关专业的高校讲师,从事IT行业的编程人员,人工智能领域的从业人员。在有一定基础的前提下还是能学会的。
无编程基础的人员则需要提前学习python的基础课程(报名优就业的深度学习课程会单独赠送python基础课程的,无基础学员也能学习)。
先确定一个概念:深度学习跟Python无关。深度学习是一种技术,而Python是一门语言。
那么,回过头来,为什么是Python?
相对于J***a/C#/C++这些语言而言,Python入门简单,可以很快的实现功能。而且很多深度学习框架都是基于Python实现的。
当然,对于这个,还有一个原因就是Python的数***算精度更高,不像其他语言在一些高精度运算上都比较难受。而深度学习都是基于高精度数***算的。
即使说,使用别的语言进行开发,但是也绕不开阅读Python示例代码。因为大部分技术书籍都是基于Python的。
所以,Python完全绕不开。那么,需要掌握到什么程度呢?个人给的建议:最起码基础得掌握。深度学习,不需要Python Web基础。
这些都是Python的,零基础的话学深度学习就有点难度有点高了
到此,以上就是小编对于深度机器学习python的问题就介绍到这了,希望介绍关于深度机器学习python的2点解答对大家有用。